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Introduction: Population dynamics

® growth rate monitoring
® estimation of demographic parameters

® impact of environment on growth rate

» predators / prey / parasites

b carrying capacity




Introduction: human population
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Introduction: human population
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Introduction: human population (conducted in 1995)

Population size expected with
i) unchanged reproduction

rates: 10.2 billion
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Plan

e Basis information

® requested parameters for the development of simple models

» Leslie matrix

®* more complex models

» geometric or exponential growth
» prey-predators (Lotka-Volterra)
» density-dependence models

» multiple populations
¢ Population Viability Analyses (PVA)

» sensitivity analysis

» implications for conservation




Introduction

e Population evolution
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Introduction

e Population evolution
N = abundance at time t

B = birth
| = immigration
D = death

E = emigration

N+ =N:+B+1-D-E

estimation of abundance and density:
e. g. CMR: Capture-Mark-Recapture methods (B. Baur, Monday & Friday)




Introduction

e Population evolution

N+ =N:+B+1-D-E

reproduction:
function of fecundity, sex ratio, ...

N = abundance at time t

B = birth
| = immigration
D = death

E = emigration
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Introduction

e Population evolution
N = abundance at time t

B = birth
| = immigration
D = death

E = emigration

N+ =N:+B+1-D-E

estimation of survival (¢):
D = (I-¢) * N

(e.g. extended CMR method: Cormack-Jolly-Seber methods)
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Introduction

e Population evolution
N = abundance at time t

B = birth
| = immigration
D = death

E = emigration

N+ =N:+B+1-D-E

U

connection(s) with other population(s)

difficult to estimate
(e.g. CMR method: Cormack-Jolly-Seber methods)
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requested parameters: survival rate (¢)

® 3 groups of survival estimators:

» if all animals can be relocated
- captive populations
- telemetry

- A lost of marks, moving out the study area, etc...

» if only survivors are recorded

- 2 all individuals recaptured at t+/?

- CMR methods, using Cormack-Jolly-Seber methods
add probability of detection

» if only deaths are recorded

- band-return approaches (e.g. with hunter / fisherman)
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requested parameters: birth rate

® can be related to female only or both sex
(depending of the model)

= knowledge of sex-ratio important (adults, newborn, etc..)
¢ field evaluation of embryos / eggs / newborns per female
e mortality rate at the birth/hatching

e mortality rate of newborns (up to sexual maturity)

» per time unit
P per year

» global from birth to sexual maturity
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requested parameters: immigration / emigration

¢ difficult to estimate in wild populations

» direct methods

» CMR, evaluation with open population models (e.g. Cormack-Jolly-Seber)

» indirect estimation

» genetic evaluation

e see dynamics of multiple populations
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Population evolution

N+ =N:+B+1-D-E
(F*N:) ([1-dI*Ny)

Ni+ = (f + P)N; + dispersal

N = abundance at time t

B = birth
| = immigration
D = death

E = emigration

& = survival at time t
f = fecundity
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Closed populations

N:+1 = (f + )N + dispersal

e if the population is close: no recruitment
N+ = (f + CID)NI

A\ closed population for CMR could also signify no recruitment,

including fecundity and survival
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Leslie model

® matrix regrouping survival and fecundity for all age classes

® can be very simple (2 x 2) to very complex (y x y)

from this stage

to this stage... newborn

( newborn adults
0 5.4
adults 0.43 0.65

>

fecundity

survival
(move to an other group)
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Leslie model

® matrix regrouping survival and fecundity for all age classes

® can be very simple (2 x 2) to very complex (y x y)

from this stage

—— fecundity variable

between diff. class ages

f . : adults adults
newborn | juveniles
class agel | class age 2
newborn 0 0 4.5 6.5 <
to this stage... juveniles 0.61 0.10 0 0
adules \ 0.6 0.25 0
class age | ‘
adults
class age 2 \ 0'64\\ 07'89

juveniles did not stay
at this stage at t+|

similar survival rate
between class ages
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More complex methods...

e geometric or exponential growth

® density-dependence models

® stochasticity

® prey-predators relationship (Lotka-Volterra equations)

e multiple populations

20




geometric and exponential growth

¢ closed populations

Nt+l — (f + d))Nt
Nt+l — >\ Nt

A\ = geometric growth rate

if A = |, population size stable
if A < |, reduction of the population size

if A >1, growth of the population size

geometric = discrete growth rate
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geometric and exponential growth

Nt+l — >\ Nt

e for long t time steps

N: = No * AN ¥ Ay A3 % ...

® to estimate constant annual growth
N: = N, * Al

¢ for annual growth rate over t time steps

>\=\t/Nt/NO
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geometric and exponential growth

e exponential (continuous) growth rate

» not focused on one year (or a time unit)

e when Attendto 0

» tiny change in population size (dN) over a tiny interval of time (dt)

dN/dt=rN

» r = instantaneous growth rate per capita (per individual)

e dN/dt = derivative;rN = slope of the tangent of the curve of N
plotted against time
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geometric and exponential growth
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e Example of a exponential growth
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density dependance: introduction

e previous models: unaffected by its own density
e but population cannot grow exponentially for long periods...
= “limitation” of growth due to numerous reasons

» e.g.food limits, territoriality, ...

e Density dependance: refer to the profound influence that a
population’s density has on the vital rates of individuals in the
population
changes in vital rates lead to changes in population growth rate
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density dependance

® high density — negative impact: competition between individuals

» direct competition: interference or contests (fights)

- for food, mates, territories
% winners can reproduce, losers not
» predators, parasites or contagious diseases
% regulates populations

» others....

* high density — positive impact: avoiding Allee effect

» difficulties to find a mate in very small populations
» confusion to avoid predation (e.g. mormont crickets)

» co-operation for founding food, to defend food
4
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density dependance: some examples of negative density
dependance

(a) Black-throated blue warbler
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density dependance: some examples of negative density
dependance

(b) Wildebeest
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density dependance: some examples of negative density
dependance

(¢) Meadow vole
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density dependance: some examples of negative density
dependance

(a) Black-throated blue warbler (b) Wildebeest
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density dependance: carrying capacity

e Carrying capacity: K

=1 (r=20)

® carrying capacity = equilibrium
if density is greater than K: mortality > reprog
if density is lower than K: reproduction > mo

™
o

= Overs&oot Carrying Capacity

—
n
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I I | I
1800 1825 1850 1875 1900 1925

31




density dependance: logistic growth model

® exponential growth:
» r = constant
® |ogistic growth:

» r change f(population size)

» r « [In(Ne+1/N¢)] = intrinsic growth rate
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density dependance: logistic growth model

(a) Exponential growth with r=0.18
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density dependance: ratio of recruitment and abundance

(a)

dN
de
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Population size
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density dependance: some conterintuitive dynamics

e with the discrete logistic
growth equation:

o

t+1

without stochasticity

® can become:

» cycles

» unpredictable

¢ for r<l.0:s-shape curve
e for 2.0<r<2.69: predictable cycles

e for r>2.69: chaos
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Stochasticity in models

® all presented model: no variation in the different parameters
e add some “variability” in different parameters

e distribution of | parameter:

» uniform distribution between min and max

» central tendency (e.g. lognormal, normal, ...)

» pick up several values measured in the field
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Prey-predation relationships
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Prey-predation relationships: introduction

® predators (or parasites) can have an impact on population

abundance

¢ close relationship between prey and predator densities

® predation rate:

Predation rate = (number of prey killed / pTy abundanceK)E*IOO

® numerous possible responses:

» high level of prey — higher survival rate g,
» high level of prey — increase of predat« guo

» generally not only one prey and one prt 3 so

usan

c 40

Th

0
1850

T
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Year

= Snowshoe hare
p —— | Lynx

o o
XuA| jo spuesnoy )

[+

1900 1925

from Purves et al.,, 1992
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Prey-predation relationships: Lotka-Volterra equations

dx ~ ored
I S A, = y = predator abundance
dt l"(a o -"3y) = X = prey abundance
= dy/dt and dx/dt = growth of the two
dy populations against time
E = —y(",' - (5:1?) » &, B, Y and O = parameters

representing the interaction between
the two species

® prey: unlimited food supply; exponential reproduction (0x); rate of

predation (Bxy), function of meeting frequency between predator
and prey

e predator: growth rate of the predator (dxy); Y natural death of the
predator
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Prey-predation relationships: Lotka-Volterra solutions
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Prey-predation relationships: Lotka-Volterra solutions
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e Example: baboons and cheetahs
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Multiple populations

e Until now: no emigration / immigration

e “closed population”

Nt+I—Nt+B+

N = abundance at time t

B = birth
| = immigration

D = death
E = emigration

Nt+l — (f + CI))Nt

mlgratlon]

¢ = survival at time t
f = fecundity
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Multiple populations

® immigration /emigration: difficult to estimate

» radio-tracking / Capture-Mark-Recapture

> ..

¢ Complex model, implying population dynamic for each deme
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Multiple populations: source/sink populations

min = 0.4
Mout — 0.4
A=1.00
Y
(0//0' POP p) stable
S\
A
source POP I m=0.1 m=0.2
mx
\05
A= 1.05 M
min = 0.4 ~02
Mout = 0.8 POP 3 sink
A =0.95
Min = 0.7

Mout = 0.3
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Multiple populations: source/sink populations

® source population: population that is strong contributor

» more emigration than immigration

» often:A> 1.0

¢ sink population: population that drains on the system
(metapopulation)

» more immigration than emigration

» population cannot survive without immigration

sou

A =0.95

stable

sink
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Population dynamic: summary

® important tools to estimate if population has a positive or negative
growth rate.

® can be used for testing impact of treatments on experimental
populations (e.g. test of parameters on the fitness, using the
complete life cycle)

® can be use with natural populations

o A\ difficulties to evaluate all parameters (survival, fecundity), with

the complete variance

o A\ complexity of some models...

¢ allow to evaluate the future of populations:
PVA (Population Viability Analysis)
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Population Viability Analysis: estimate the future evolution...

® PVA:application of data and models to estimate probabilities that a
population will persist for a specific time into the future (and to
give insights into factors that constitute the biggest threats)

® include:

» survival rate, fecundity of different class ages

» stochasticity
(on different variables, following specific models)
try to ground it on the field observation

» density dependence models ému
(not necessary for small, low density - threaten - p

g100]

» (predator / parasites interaction)

200

e Minimum Viable Population (MVP) wf

a0

» difficulty do define

20

5 10 15 20 2h a0 Kid] 40 45
années
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Population Viability Analysis: estimate the future evolution...

® implication for conservation aspect

» prediction of risks in small populations
(risk of extinction, quasi-extinction, ...)

e |UCN Red List: Categories and Criteria (Version 3.1)

» some criteria related to the probability of extinction:

E. Quantitative analysis of extinction risk

Use any of the criteria
A-E

Critically
Endangered

Endangered

Vulnerable

E. Indicating the probability
of extinction

50% in 10 years
or 3 generations
(100 year max)

20% in 20 years
or 5 generations
(100 years max)

10% in 100 years
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N=100

® based on a 2x2 Leslie Matrix

Population Viability Analysis: simple model

350 -

class age O | class age |
class age 0 0 1.2
class age | 0.3 0.7
N=100 clas] e O [ class age |
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\v /
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300 +
250 4
200 -
150 1
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Population Viability Analysis: simple model

® based on a 5x5 Leslie Matrix

N=100 [class age O|class age | |class age 2|class age 3|class age 4
class age 0 0 0 I I I
class age | 0.5 0 0 0 0
class age 2 0 0.5 0 0 0
class age 3 0 0 0.7 0 0
class age 4 0 0 0 0.7 0.7
12094 N
100 A
80 -
60 A
40 -
201 time
0 T T T T 1
0 5 10 15 20 25
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Population Viability Analysis: add complexity in the model

¢ stochasticity

200 N 120 N
150 100- T
80 - S~
\\ ?

100 - 60 - A

\\ 40 - ‘ {:w‘fﬁ

m i M
time 20 1 time
o | ] | | | | | | | | O | ] || || | |
0 5 10 I5 20 25 0 5 10 15 20 25
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Population Viability Analysis: add complexity in the model

¢ stochasticity

300 -

250 ~

200 -

150

50 -

100 simulations

720 time 75

100% 1%

90%
80%
70% -
60% -
50% -
40% -
30%
20% -
10% +

0% T T T T

0 5 10 I5 20 time g

risk that the population go under a fixed threshold
(N = 40)
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Population Viability Analysis: add complexity in the model

® stochasticity

® density dependance

No=100; K=500; r=0.2 No=100; K=500; r=0.1
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Population Viability Analysis: sensitivity analysis

¢ try to define the impact on the population size of changes in a
single parameter

» example:

- with an increase of 10% of the survival rate of the adults, the population will increase
by 5% every year

- with an increase of 10% of the survival rate of the juveniles, the population will
increase by 1% every year

- with an increase of 90% of the fecundity, the population will increase by 5% every
year

® important for conservation aspect

» determine on which parameter the impact of improvement [&p /=4
will be the highest -

e example: Vipera berus




Population Viability Analysis: Vipera berus
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Population Viability Analysis: Vipera berus

PVA: mean female adult population size
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Vibera berus
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Population Viability Analysis: Vipera berus

PVA: sensitivity analysis: variation of survival rate and it impact on the population size

after 50 years

130%
proportion de la modification
de l'effectif des femelles apres
50 années simulées [%]

120%

110%

Si
s2
S3
S4

85
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100% 1~

105%

110%

S= survival rate of the adults
S1-5 = survival rate of the

juveniles
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Population Viability Analysis: Vipera berus

PVA: mean female adult population size: with additional culling
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Conclusions

e simple models can already explain observed/expected
increase/decrease/fluctuation of populations

e complexity for complex life cycles
e test the complete life cycle

® important impact on conservation aspects
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some softwares and links

e RAMAS: www.ramas.com

» most commonly used software

» not free!

e ULM: http://www.biologie.ens.fr/~legendre/ulm/ulm.html

» free

» numerous models, high level of complexity

e POPULUS: http://www.cbs.umn.edu/populus/

» very simple, numerous models

» more for demo than for analyses
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