
Population dynamics, 
viability analysis

Sylvain Ursenbacher
NLU, room 36

1



Introduction

population size

population
grow rate

demography

short term / long term evolution

threat

Population dynamics
predator, 
parasite

Prey

immigration, 
emigration

2



Introduction: Population dynamics

• growth rate monitoring

• estimation of demographic parameters

• impact of environment on growth rate

‣ predators / prey / parasites

‣ carrying capacity
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Introduction: human population
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Introduction: human population
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Introduction: human population (conducted in 1995)
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Plan

• Basis information

• requested parameters for the development of simple models

‣ Leslie matrix

• more complex models

‣ geometric or exponential growth

‣ prey-predators (Lotka-Volterra)

‣ density-dependence models

‣ multiple populations

• Population Viability Analyses (PVA)

‣ sensitivity analysis

‣ implications for conservation
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Introduction

• Population evolution
N = abundance at time t
B = birth
I = immigration
D = death
E = emigration

Nt+1 = Nt + B + I - D - E
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Introduction

• Population evolution

Nt+1 = Nt + B + I - D - E

N = abundance at time t
B = birth
I = immigration
D = death
E = emigration

estimation of abundance and density:
e. g. CMR: Capture-Mark-Recapture methods (B. Baur, Monday & Friday)
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Introduction

• Population evolution

Nt+1 = Nt + B + I - D - E

N = abundance at time t
B = birth
I = immigration
D = death
E = emigration

reproduction:
function of fecundity, sex ratio, ...
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Introduction

• Population evolution

Nt+1 = Nt + B + I - D - E

N = abundance at time t
B = birth
I = immigration
D = death
E = emigration

estimation of survival (ϕ):
D = (1-ϕ) * Nt

(e.g. extended CMR method: Cormack-Jolly-Seber methods)
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Introduction

• Population evolution

Nt+1 = Nt + B + I - D - E

N = abundance at time t
B = birth
I = immigration
D = death
E = emigration

connection(s) with other population(s)

difficult to estimate
(e.g. CMR method: Cormack-Jolly-Seber methods)
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• 3 groups of survival estimators:

‣ if all animals can be relocated

- captive populations

- telemetry

- ⚠  lost of marks, moving out the study area, etc...

‣ if only survivors are recorded

- ?? all individuals recaptured at t+1?

- CMR methods, using Cormack-Jolly-Seber methods
add probability of detection

‣ if only deaths are recorded

- band-return approaches (e.g. with hunter / fisherman)

requested parameters: survival rate (ϕ)
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requested parameters: birth rate

• can be related to female only or both sex 
(depending of the model)

➡ knowledge of sex-ratio important (adults, newborn, etc..)

• field evaluation of embryos / eggs / newborns per female

• mortality rate at the birth/hatching

• mortality rate of newborns (up to sexual maturity)

‣ per time unit

‣ per year

‣ global from birth to sexual maturity
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requested parameters: immigration / emigration

• difficult to estimate in wild populations

‣ direct methods

‣ CMR, evaluation with open population models (e.g. Cormack-Jolly-Seber)

‣ indirect estimation 

‣ genetic evaluation

• see dynamics of multiple populations
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Population evolution

N = abundance at time t
B = birth
I = immigration
D = death
E = emigration

Nt+1 = Nt + B + I - D - E

Nt+1 = (f + ϕ)Nt + dispersal

ϕ = survival at time t
f = fecundity

(f*Nt) ([1-ϕ]*Nt)
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Closed populations

• if the population is close: no recruitment

Nt+1 = (f + ϕ)Nt + dispersal

Nt+1 = (f + ϕ)Nt

⚠ closed population for CMR could also signify no recruitment, 

including fecundity and survival
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Leslie model

• matrix regrouping survival and fecundity for all age classes

• can be very simple (2 x 2) to very complex (y x y)

newborn adults

newborn 0 15.4

adults 0.43 0.65

⤹
from this stage

to this stage...
fecundity

survival
(move to an other group)
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Leslie model

• matrix regrouping survival and fecundity for all age classes

• can be very simple (2 x 2) to very complex (y x y)

⤹
from this stage

to this stage...

newborn juveniles
adults

class age1
adults 

class age 2

newborn 0 0 4.5 6.5

juveniles 0.67 0.10 0 0

adults 
class age 1 0.61 0.25 0

adults 
class age 2 0.64 0.89

fecundity variable 
between diff. class ages

juveniles did not stay 
at this stage at t+1

similar survival rate 
between class ages
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More complex methods...

• geometric or exponential growth

• density-dependence models

• stochasticity

• prey-predators relationship (Lotka-Volterra equations)

• multiple populations
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More complex methods...

• geometric or exponential growth

• density-dependence models

• stochasticity

• prey-predators relationship (Lotka-Volterra equations)

• multiple populations
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geometric and exponential growth

• closed populations

Nt+1 = (f + ϕ)Nt

Nt+1 =  λ Nt

λ = geometric growth rate

      if λ < 1, reduction of the population size
      if λ = 1, population size stable
      if λ >1, growth of the population size

geometric = discrete growth rate
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geometric and exponential growth

• for long t time steps

• to estimate constant annual growth

• for annual growth rate over t time steps

Nt+1 =  λ Nt

Nt = No * λ1 * λ2 * λ3 * ... λt 

Nt = No * λt 

λ = √Nt / N0
t
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geometric and exponential growth

• exponential (continuous) growth rate

‣ not focused on one year (or a time unit)

• when Δt tend to 0

‣ tiny change in population size (dN) over a tiny interval of time (dt)

‣ r = instantaneous growth rate per capita (per individual)

• dN / dt   = derivative; rN = slope of the tangent of the curve of N 
plotted against time

dN / dt = rN
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geometric and exponential growth

• Example of a exponential growth

‣ λ = 1.65

• or plotted against the natural 
logarithm (ln) of abundance

‣ slope in (b): r
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More complex methods...

• geometric or exponential growth

• density-dependence models

• stochasticity

• prey-predators relationship (Lotka-Volterra equations)

• multiple populations
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density dependance: introduction 

• previous models: unaffected by its own density

• but population cannot grow exponentially for long periods...

➡ “limitation” of growth due to numerous reasons

‣ e.g. food limits, territoriality, ...

• Density dependance: refer to the profound influence that a 
population’s density has on the vital rates of individuals in the 
population
changes in vital rates lead to changes in population growth rate
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density dependance 

• high density → negative impact: competition between individuals

‣ direct competition: interference or contests (fights)

- for food, mates, territories

★ winners can reproduce, losers not

‣ predators, parasites or contagious diseases

★ regulates populations

‣ others....

• high density → positive impact:  avoiding Allee effect

‣ difficulties to find a mate in very small populations

‣ confusion to avoid predation (e.g. mormont crickets) 

‣ co-operation for founding food, to defend food

‣ ...
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density dependance: some examples of negative density 
dependance 
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density dependance: some examples of negative density 
dependance 
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density dependance: some examples of negative density 
dependance 
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density dependance: some examples of negative density 
dependance 
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density dependance: carrying capacity 

• Carrying capacity: K 

• the point at which per-capita mortality (1-survival) and 
reproduction are equal, so that the population just replaces itself
λ = 1 (r = 0)

• carrying capacity = equilibrium
if density is greater than K: mortality > reproduction
if density is lower than K: reproduction > mortality
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density dependance: logistic growth model 

• exponential growth:

‣ r = constant

• logistic growth:

‣ r change f(population size)

‣ r ∝ [ln(Nt+1/Nt)]  = intrinsic growth rate
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density dependance: logistic growth model 
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density dependance: ratio of recruitment and abundance 
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density dependance: some conterintuitive dynamics 

• with the discrete logistic
growth equation: 

without stochasticity

• can become:

‣ cycles

‣ unpredictable

• for r<1.0: s-shape curve

• for 2.0<r<2.69: predictable cycles

• for r>2.69: chaos
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density dependance: some conterintuitive dynamics 
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• with the discrete logistic
growth equation: 

without stochasticity

• can become:

‣ cycles

‣ unpredictable

• for r<1.0: s-shape curve

• for 2.0<r<2.69: predictable cycles

• for r>2.69: chaos
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More complex methods...

• geometric or exponential growth

• density-dependence models

• stochasticity

• prey-predators relationship (Lotka-Volterra equations)

• multiple populations
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Stochasticity in models

• all presented model: no variation in the different parameters

• add some “variability” in different parameters

• distribution of 1 parameter:

‣ uniform distribution between min and max

‣ central tendency (e.g. lognormal, normal, ...)

‣ pick up several values measured in the field
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More complex methods...

• geometric or exponential growth

• density-dependence models

• stochasticity

• prey-predators relationship (Lotka-Volterra equations)

• multiple populations
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Prey-predation relationships

⤾⤾
growth

⤾growth

growth

growth
predation
(adults)

predation
(mainly juveniles)

predator

prey 1 prey 2

possible 
interactions
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Prey-predation relationships: introduction 

• predators (or parasites) can have an impact on population 
abundance

• close relationship between prey and predator densities

• predation rate: 

• numerous possible responses:

‣ high level of prey → higher survival rate and reproduction level

‣ high level of prey → increase of predator density (recruitment)

‣ generally not only one prey and one predator...

from Purves et al., 1992

Predation rate = (number of prey killed / prey abundance )*100
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Prey-predation relationships: Lotka-Volterra equations 

• prey: unlimited food supply; exponential reproduction (αx); rate of 
predation (βxy), function of meeting frequency between predator 
and prey

• predator: growth rate of the predator (δxy); γ natural death of the 
predator

	
 ▪	
 y = predator abundance
	
 ▪	
 x = prey abundance 
	
 ▪	
 dy/dt and dx/dt = growth of the two 

populations against time
	
 ▪	
 α, β, γ and δ = parameters 

representing the interaction between 
the two species 
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Prey-predation relationships: Lotka-Volterra solutions 
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Prey-predation relationships: Lotka-Volterra solutions 

• Example: baboons and cheetahs

• oscillations

• relationship between prey 
and predator abundance
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More complex methods...

• geometric or exponential growth

• density-dependence models

• stochasticity

• prey-predators relationship (Lotka-Volterra equations)

• multiple populations
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Multiple populations

N = abundance at time t
B = birth
I = immigration
D = death
E = emigration

Nt+1 = Nt + B + I - D - E

Nt+1 = (f + ϕ)Nt + migration

ϕ = survival at time t
f = fecundity

• Until now: no emigration / immigration

• “closed population”
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Multiple populations

• immigration /emigration: difficult to estimate

‣ radio-tracking / Capture-Mark-Recapture

‣ ...

• Complex model, implying population dynamic for each deme 
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Multiple populations: source/sink populations

Pop 1

Pop 2

Pop 3

λ = 1.05

λ = 1.00

λ = 0.95

m=0.3

m=0.2

m=0.2

m=0.5

m=0.2
m=0.1

source

sink

stable

min = 0.4
mout = 0.8

min = 0.7
mout = 0.3

min = 0.4
mout = 0.4
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Multiple populations: source/sink populations

• source population: population that is strong contributor 

‣ more emigration than immigration

‣ often: λ > 1.0

• sink population: population that drains on the system 
(metapopulation)

‣ more immigration than emigration

‣ population cannot survive without immigration

λ = 0.95

Pop 1

Pop 2

Pop 3

λ = 1.05

λ = 1.00

m=0.5

m=0.4

m=0.5

m=0.2

m=0.2
m=0.1

source

sink

stable
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Population dynamic: summary

• important tools to estimate if population has a positive or negative 
growth rate.

• can be used for testing impact of treatments on experimental 
populations (e.g. test of parameters on the fitness, using the 
complete life cycle)

• can be use with natural populations

• ⚠ difficulties to evaluate all parameters (survival, fecundity), with 

the complete variance

• ⚠ complexity of some models...

• allow to evaluate the future of populations: 
PVA (Population Viability Analysis)
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Population Viability Analysis: estimate the future evolution...

• PVA: application of data and models to estimate probabilities that a 
population will persist for a specific time into the future (and to 
give insights into factors that constitute the biggest threats)

• include: 

‣ survival rate, fecundity of different class ages

‣ stochasticity
(on different variables, following specific models)
try to ground it on the field observation

‣ density dependence models 
(not necessary for small, low density - threaten - populations)

‣ (predator / parasites interaction)

• Minimum Viable Population (MVP)

‣ difficulty do define
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Population Viability Analysis: estimate the future evolution...

• implication for conservation aspect

‣ prediction of risks in small populations 
(risk of extinction, quasi-extinction, ...)

• IUCN Red List: Categories and Criteria (Version 3.1)

‣ some criteria related to the probability of extinction:
E. Quantitative analysis of extinction risk

Use any of the criteria 
A-E

Critically 
Endangered Endangered Vulnerable

E. Indicating the probability 
of extinction

50% in 10 years 
or 3 generations 
(100 year max)

20% in 20 years 
or 5 generations 
(100 years max)

10% in 100 years
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Population Viability Analysis: simple model

• based on a 2x2 Leslie Matrix

N=100 class age 0 class age 1

class age 0 0 1.2

class age 1 0.3 0.7 0
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Population Viability Analysis: simple model

• based on a 5x5 Leslie Matrix

N=100 class age 0 class age 1 class age 2 class age 3 class age 4

class age 0 0 0 1 1 1

class age 1 0.5 0 0 0 0

class age 2 0 0.5 0 0 0

class age 3 0 0 0.7 0 0

class age 4 0 0 0 0.7 0.7

0
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120
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time

N
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Population Viability Analysis: add complexity in the model

• stochasticity
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Population Viability Analysis: add complexity in the model

• stochasticity
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Population Viability Analysis: add complexity in the model

• stochasticity

• density dependance

N0=100; K=500; r=0.1
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Continuous Logistic Population Growth

N0=100; K=500; r=0.2
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Population Viability Analysis: sensitivity analysis

• try to define the impact on the population size of changes in a 
single parameter

‣ example:

- with an increase of 10% of the survival rate of the adults, the population will increase 
by 5% every year

- with an increase of 10% of the survival rate of the juveniles, the population will 
increase by 1% every year

- with an increase of 90% of the fecundity, the population will increase by 5% every 
year

• important for conservation aspect

‣ determine on which parameter the impact of improvement 
will be the highest

• example: Vipera berus
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Population Viability Analysis: Vipera berus

Model 1
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Population Viability Analysis: Vipera berus

PVA: mean female adult population size
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Population Viability Analysis: Vipera berus

PVA: mean female adult population size: impact of female survival rate
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Population Viability Analysis: Vipera berus

S= survival rate of the adults
S1-5 = survival rate of the 
juveniles

PVA: sensitivity analysis: variation of survival rate and it impact on the population size
                                   after 50 years
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Population Viability Analysis: Vipera berus

PVA: mean female adult population size: with additional culling
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Conclusions

• simple models can already explain observed/expected 
increase/decrease/fluctuation of populations

• complexity for complex life cycles 

• test the complete life cycle

• important impact on conservation aspects
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some softwares and links

• RAMAS: www.ramas.com

‣ most commonly used software

‣ not free!

• ULM: http://www.biologie.ens.fr/~legendre/ulm/ulm.html

‣ free

‣ numerous models, high level of complexity

• POPULUS: http://www.cbs.umn.edu/populus/

‣ very simple, numerous models

‣ more for demo than for analyses
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