Population dynamics, viability analysis

Introduction: Population dynamics

- growth rate monitoring
- estimation of demographic parameters
- impact of environment on growth rate
 - predators / prey / parasites
 - carrying capacity

Introduction: human population

Introduction: human population

Introduction: human population (conducted in 1995)

Plan

- Basis information
- requested parameters for the development of simple models
 - Leslie matrix
- more complex models
 - geometric or exponential growth
 - prey-predators (Lotka-Volterra)
 - density-dependence models
 - multiple populations
- Population Viability Analyses (PVA)
 - sensitivity analysis
 - implications for conservation

• Population evolution interpopulation intrapopulation movements variation $N_{t+1} = N_t + B + I - D - E$ new individuals individuals that disappeared Population size before

- N = abundance at time t
- B = birth
- I = immigration
- D = death
- E = emigration

• Population evolution

N = abundance at time t

- B = birth
- I = immigration
- D = death
- E = emigration

 $N_{t+1} = N_t + B + I - D - E$

estimation of abundance and density: e.g. CMR: Capture-Mark-Recapture methods (B. Baur, Monday & Friday)

• Population evolution

N = abundance at time t

B = birth

- I = immigration
- D = death
- E = emigration

$N_{t+1} = N_t + B + I - D - E$

reproduction: function of fecundity, sex ratio, ...

• Population evolution

N = abundance at time t

B = birth

- I = immigration
- D = death
- E = emigration

 $N_{t+1} = N_t + B + I - D - E$

(e.g. extended CMR method: Cormack-Jolly-Seber methods)

• Population evolution

N = abundance at time t

- B = birth
- I = immigration
- D = death
- E = emigration

$N_{t+1} = N_t + B + I - D - E$

connection(s) with other population(s)

difficult to estimate (e.g. CMR method: Cormack-Jolly-Seber methods)

requested parameters: survival rate (ϕ)

- 3 groups of survival estimators:
 - if all animals can be relocated
 - captive populations
 - telemetry
 - 🛆 lost of marks, moving out the study area, etc...
 - if only survivors are recorded
 - ?? all individuals recaptured at t+1?
 - CMR methods, using Cormack-Jolly-Seber methods add probability of detection
 - if only deaths are recorded
 - band-return approaches (e.g. with hunter / fisherman)

requested parameters: birth rate

- can be related to female only or both sex (depending of the model)
 - knowledge of sex-ratio important (adults, newborn, etc..)
- field evaluation of embryos / eggs / newborns per female
- mortality rate at the birth/hatching
- mortality rate of newborns (up to sexual maturity)
 - per time unit
 - per year
 - global from birth to sexual maturity

requested parameters: immigration / emigration

- difficult to estimate in wild populations
 - direct methods
 - CMR, evaluation with open population models (e.g. Cormack-Jolly-Seber)
 - indirect estimation
 - genetic evaluation

• see dynamics of multiple populations

Population evolution

$$N_{t+1} = N_t + B + I - D - E \qquad I = \text{immigration} \\ (f^*N_t) \qquad ([1-\phi]^*N_t) \qquad E = \text{emigration} \\ N_{t+1} = (f + \phi)N_t + \text{dispersal}$$

 ϕ = survival at time *t* f = fecundity

N = abundance at time t

Closed populations

$N_{t+1} = (f + \phi)N_t + dispersal$

• if the population is close: no recruitment

 $N_{t+1} = (f + \phi)N_t$

 \triangle closed population for CMR could also signify no recruitment, including fecundity and survival

Leslie model

- matrix regrouping survival and fecundity for all age classes
- can be very simple (2×2) to very complex $(y \times y)$

Leslie model

- matrix regrouping survival and fecundity for all age classes
- can be very simple (2×2) to very complex $(y \times y)$

More complex methods...

- geometric or exponential growth
- density-dependence models
- stochasticity
- prey-predators relationship (Lotka-Volterra equations)
- multiple populations

More complex methods...

- geometric or exponential growth
- density-dependence models
- stochasticity
- prey-predators relationship (Lotka-Volterra equations)
- multiple populations

• closed populations

 $N_{t+1} = (f + \phi)N_t$ $N_{t+1} = \lambda N_t$

 λ = geometric growth rate

if $\lambda < I$, reduction of the population size if $\lambda = I$, population size stable

if $\lambda > I$, growth of the population size

geometric = discrete growth rate

 $N_{t+1} = \lambda N_t$

• for long t time steps

$$N_t = N_o * \lambda_1 * \lambda_2 * \lambda_3 * \dots \lambda_t$$

• to estimate constant annual growth

 $N_t = N_o * \lambda^t$

• for annual growth rate over t time steps

 $\lambda = \sqrt[t]{N_t / N_0}$

- exponential (continuous) growth rate
 - not focused on one year (or a time unit)
- when Δt tend to 0
 - tiny change in population size (dN) over a tiny interval of time (dt)

dN / dt = rN

r = instantaneous growth rate per capita (per individual)

 dN / dt = derivative; rN = slope of the tangent of the curve of N plotted against time

• Example of a exponential growth

λ = 1.65

- or plotted against the natural logarithm (In) of abundance
 - slope in (b): r

More complex methods...

- geometric or exponential growth
- density-dependence models
- stochasticity
- prey-predators relationship (Lotka-Volterra equations)
- multiple populations

density dependance: introduction

- previous models: unaffected by its own density
- but population cannot grow exponentially for long periods...
- "limitation" of growth due to numerous reasons
 - e.g. food limits, territoriality, ...
- <u>Density dependance</u>: refer to the profound influence that a population's density has on the vital rates of individuals in the population

changes in vital rates lead to changes in population growth rate

density dependance

- high density \rightarrow negative impact: competition between individuals
 - direct competition: interference or contests (fights)
 - for food, mates, territories
 - \star winners can reproduce, losers not
 - predators, parasites or contagious diseases
 - \star regulates populations
 - others....

• ...

- high density \rightarrow positive impact: avoiding Allee effect
 - difficulties to find a mate in very small populations
 - confusion to avoid predation (e.g. mormont crickets)
 - co-operation for founding food, to defend food

density dependance: carrying capacity

Carrying capacity: K

- the point at which per-capita mortality (I-survival) and reproduction are equal, so that the population just replaces itsel $\lambda = I \ (r = 0)$
- carrying capacity = equilibrium
 if density is greater than K: mortality > reproduction
 if density is lower than K: reproduction > mortality

density dependance: logistic growth model

- exponential growth:
 - r = constant
- logistic growth:
 - r change f(population size)
 - $r \propto [ln(N_{t+1}/N_t)]$ = intrinsic growth rate

density dependance: logistic growth model

density dependance: ratio of recruitment and abundance

density dependance: some conterintuitive dynamics

• with the discrete logistic growth equation:

$$N_{t+1} = N_t e^{\left(r\left[1-\left(\frac{Nt}{K}\right)\right]\right)}$$

without stochasticity

- can become:
 - cycles
 - unpredictable
- for r<1.0: s-shape curve
- for 2.0<r<2.69: predictable cycles
- for r>2.69: chaos

density dependance: some conterintuitive dynamics

• with the discrete logistic growth equation:

$$N_{t+1} = N_t e^{\left(r\left[1-\left(\frac{Nt}{K}\right)\right]\right)}$$

without stochasticity

- can become:
 - cycles
 - unpredictable
- for r<1.0: s-shape curve
- for 2.0<r<2.69: predictable cycles
- for r>2.69: chaos

More complex methods...

- geometric or exponential growth
- density-dependence models
- stochasticity
- prey-predators relationship (Lotka-Volterra equations)
- multiple populations

Stochasticity in models

- all presented model: no variation in the different parameters
- add some "variability" in different parameters
- distribution of I parameter:
 - uniform distribution between min and max
 - central tendency (e.g. lognormal, normal, ...)
 - pick up several values measured in the field

More complex methods...

- geometric or exponential growth
- density-dependence models
- stochasticity
- prey-predators relationship (Lotka-Volterra equations)
- multiple populations

Prey-predation relationships: introduction

- predators (or parasites) can have an impact on population abundance
- close relationship between prey and predator densities
- predation rate:

Predation rate = (number of prey killed / prey abundance)*100

- numerous possible responses:
 - high level of prey \rightarrow higher survival rate 16
 - ▶ high level of prey → increase of predate \$120
 - generally not only one prey and one prog so

from Purves et al., 1992

Prey-predation relationships: Lotka-Volterra equations

$$\frac{dx}{dt} = x(\alpha - \beta y)$$

$$\frac{dy}{dt} = -y(\gamma - \delta x)$$

- y = predator abundance
- x = prey abundance
- dy/dt and dx/dt = growth of the two populations against time
- α, β, γ and δ = parameters representing the interaction between the two species
- prey: unlimited food supply; exponential reproduction (αx); rate of predation (βxy), function of meeting frequency between predator and prey
- predator: growth rate of the predator (δxy); γ natural death of the predator

Prey-predation relationships: Lotka-Volterra solutions

• Example: baboons and cheetahs

• oscillations

• relationship between prey and predator abundance

More complex methods...

- geometric or exponential growth
- density-dependence models
- stochasticity
- prey-predators relationship (Lotka-Volterra equations)
- multiple populations

Multiple populations

- Until now: no emigration / immigration
- "closed population"

$$N_{t+1} = N_t + B + I - D - E$$

$$I = \text{immigration}$$

$$D = \text{death}$$

$$E = \text{emigration}$$

$$N_{t+1} = (f + \phi)N_t + \text{migration}$$

$$\phi = \text{survival at time } t$$

$$f = \text{fecundity}$$

N = abundance at time t

Multiple populations

- immigration /emigration: difficult to estimate
 - radio-tracking / Capture-Mark-Recapture
 - **)** ...
- Complex model, implying population dynamic for each deme

Multiple populations: source/sink populations

Multiple populations: source/sink populations

- source population: population that is strong contributor
 - more emigration than immigration
 - often: $\lambda > 1.0$
- <u>sink population</u>: population that drains on the system (metapopulation)
 - more immigration than emigration
 - population cannot survive without immigration

Population dynamic: summary

- important tools to estimate if population has a positive or negative growth rate.
- can be used for testing impact of treatments on experimental populations (e.g. test of parameters on the fitness, using the complete life cycle)
- can be use with natural populations

- allow to evaluate the future of populations: PVA (Population Viability Analysis)

Population Viability Analysis: estimate the future evolution...

- PVA: application of data and models to estimate probabilities that a population will persist for a specific time into the future (and to give insights into factors that constitute the biggest threats)
- include:
 - survival rate, fecundity of different class ages
 - stochasticity

 (on different variables, following specific models)
 try to ground it on the field observation

 - (predator / parasites interaction)
- Minimum Viable Population (MVP)
 - difficulty do define

Population Viability Analysis: estimate the future evolution...

- implication for conservation aspect
 - prediction of risks in small populations (risk of extinction, quasi-extinction, ...)
- IUCN Red List: Categories and Criteria (Version 3.1)
 - some criteria related to the probability of extinction:
 E. Quantitative analysis of extinction risk

Use any of the criteria A-E	Critically Endangered	Endangered	Vulnerable
E. Indicating the probability of extinction	50% in 10 years or 3 generations (100 year max)	20% in 20 years or 5 generations (100 years max)	10% in 100 years

Population Viability Analysis: simple model

• based on a 2x2 Leslie Matrix

Population Viability Analysis: simple model

• based on a 5x5 Leslie Matrix

N=100	class age 0	class age I	class age 2	class age 3	class age 4
class age 0	0	0	I	I	I
class age 1	0.5	0	0	0	0
class age 2	0	0.5	0	0	0
class age 3	0	0	0.7	0	0
class age 4	0	0	0	0.7	0.7

Population Viability Analysis: add complexity in the model

- stochasticity
- density dependance

Population Viability Analysis: sensitivity analysis

- try to define the impact on the population size of changes in a single parameter
 - example:
 - with an increase of 10% of the survival rate of the adults, the population will increase by 5% every year
 - with an increase of 10% of the survival rate of the juveniles, the population will increase by 1% every year
 - with an increase of 90% of the fecundity, the population will increase by 5% every year
- important for conservation aspect
 - determine on which parameter the impact of improvement will be the highest
- example: Vipera berus

PVA: mean female adult population size

PVA: mean female adult population size: impact of female survival rate

PVA: sensitivity analysis: variation of survival rate and it impact on the population size after 50 years

PVA: mean female adult population size: with additional culling

Conclusions

- simple models can already explain observed/expected increase/decrease/fluctuation of populations
- complexity for complex life cycles
- test the complete life cycle
- important impact on conservation aspects

some softwares and links

- RAMAS: <u>www.ramas.com</u>
 - most commonly used software
 - not free!
- ULM: <u>http://www.biologie.ens.fr/~legendre/ulm/ulm.html</u>
 - free
 - numerous models, high level of complexity
- POPULUS: <u>http://www.cbs.umn.edu/populus/</u>
 - very simple, numerous models
 - more for demo than for analyses